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1. INTRODUCTION

Let M be a (linear) subspace of the (real) normed linear space X. For
any x ¥X, the (possibly empty) set of best approximations to x from M is
defined by

PM(x) :={y ¥M | ||x−y||=d(x, M)},

where d(x, M) :=inf{||x−y|| | y ¥M}. The set valued mapping PM: XQ 2M

thus defined is the metric projection onto M. The subspace M is said to be
proximinal (resp., Chebyshev) if PM(x) is nonempty (resp., is a singleton)
for each x ¥X. For example, every finite-dimensional subspace of a
normed linear space or any closed subspace of a reflexive Banach space is
proximinal. Also, any proximinal subspace of a strictly convex space is
Chebyshev.
IfM is finite-dimensional, then the metric projection PM: XQ 2M is non-
empty compact convex set valued and upper semicontinuous (see, e.g.,
[25]). Thus if it is Chebyshev, the singleton valued metric projection is
continuous.
The most important semicontinuity concept for set valued mappings is
that of lower semicontinuity (see Section 2), and the most important result
is Michael’s selection theorem: if X is a paracompact Hausdorff topological
space, Y is a Banach space, and F: XQ 2Y is a non-empty closed convex set
valued and lower semicontinuous mapping, then F has a continuous selection;
that is, there exists a continuous s: XQ Y such that s(x) ¥ F(x) for each
x ¥X [21, 22]. In particular, if M is a finite-dimensional subspace of a
normed linear space X and PM is lower semicontinuous, then the metric
projection PM: XQ 2M has a continuous selection. There has been consid-
erable interest in the existence of continuous selections for metric projec-
tions of which the references to this paper represent a small part. However,
lower semicontinuity is neither a property which one can expect of a metric
projection, nor is it a necessary condition for the existence of a continuous
selection. Two of the authors were led to seek a weaker continuity condi-
tion that would be, for a metric projection, equivalent to the existence of
a continuous selection; in [10] Deutsch and Kenderov formulated a
concept, here called approximate lower semicontinuity (and in [10] called
‘‘almost’’ lower semicontinuity), and a related weaker concept of k-lower
semicontinuity (k=2, 3, ...) which are necessary, but not in general suffi-
cient conditions for the existence of a continuous selection. For a set valued
mapping F: XQ 2Y between topological spaces X and Y, Brown [8]
defined the derived mapping FŒ of F and a transfinite sequence of higher
derived mappings. The derived mapping appears, without the name and in
a particular context, in [7]; see also [2]. Przesławski and Rybiński [23], in
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a narrower context, defined weak lower semicontinuity and some related
notions. In fact, this same notion (under the name ‘‘quasi-lower’’ semicon-
tinuity) was studied a few years earlier by Gutev [14]. The definitions of,
and the relations between, these concepts are presented systematically in
Section 2.
There are normed linear spaces in which metric projections onto finite-
dimensional subspaces are more restricted. For example, there are spaces in
which all metric projections onto finite-dimensional subspaces are lower
semicontinuous (the spaces with property (P) of [6]). The spaces C(T) of
real continuous functions on a compact Hausdorff space T, and L1(m) of
integrable functions on a measure space, have been approximation theoret-
ically much studied. They have the property that a metric projection PM
onto a finite-dimensional subspace possesses a continuous selection if and
only if it is approximate lower semicontinuous, and, in the C(T) case, if
and only if it is 2-lower semicontinuous. Zhivkov [27] and Brown [8]
showed, independently and by rather different approaches, that this does
not hold for all normed linear spaces X (contrary to the mistaken claim by
Zhiqiang [26]). These results suggest that the concepts of approximate
lower semicontinuity and 2-lower semicontinuity deserve further study.
They are the subjects of Sections 3 and 4, respectively. Section 3 gives a
characterization of approximate lower semicontinuity. Section 4 gives two
characterizations of 2-lower semicontinuity of a metric projection onto a
finite-dimensional subspace, one in terms of the geometry of the unit ball
of the space, the other involving duality. Section 5 characterizes those
normed linear spaces with the property that all metric projections onto one-
dimensional subspaces have continuous selections, and shows that they are
those spaces with the property that all metric projections onto finite-
dimensional subspaces are approximate lower semicontinuous. A space
C(T) or L1(m) is such a space if and only if it is finite-dimensional. Section
5 concludes with a simple example of such a space in which there are one-
dimensional subspaces with metric projections which are not lower semi-
continuous.

2. LOWER SEMICONTINUITY CONCEPTS

Let X and Y be topological spaces and F: XQ 2Y a set valued mapping.
The essential domain of F is defined to be

D(F) :={x | F(x) ]”}.

Let us say that F is lower semicontinuous at (x0, y0) ¥X×Y if y0 ¥ F(x0)
and x0 ¥ int{x | F(x) 5 V ]”} for every neighborhood V of y0. F is called
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lower semicontinuous (lsc) if D(F)=X and F is lower semicontinuous at
each point of the ‘‘graph’’

G(F) :=0
x ¥X
{{x}×F(x)}

of F.
Brown [8] defined the derived mapping FŒ of a set valued mapping F:

FŒ(x) :={y ¥ F(x) | F is lsc at (x, y)}.

Thus F is lower semicontinuous if and only if D(F)=X and FŒ=F.
Higher order derived mappings are defined by transfinite induction:

F (0)=F,

if a is an ordinal, then F (a+1)=(F(a))Œ,

if a is a limit ordinal, then F (a)=4b < a F
(b),

where the intersection has its natural pointwise meaning.
Then (G(F (a)) | a an ordinal) is a decreasing transfinite sequence of
subsets of X×Y and so is eventually constant. Consequently (F (a) | a an
ordinal) is eventually constant; let Fg, the stable derived mapping of F, be
its eventual value, and let order(F) be min {a | F (a)=Fg}. It is shown in
[4] that every ordinal is the order of some set valued mapping.
A mapping s: XQ Y is a selection for F if s(x) ¥ F(x) for every x ¥X
(one can write s ¥ F). If s: XQ Y is a continuous selection then, obviously,
s ¥ FŒ and therefore s ¥ Fg.
Let Y now be restricted to be a metric space.
For any set or point A in Y denote by B(A, e) and B̄(A, e) the open and
closed e-neighborhoods (if e > 0) of A in Y; that is,

B(A, e) :={y ¥ Y | d(y, A) < e},

B̄(A, e) :={y ¥ Y | d(y, A) [ e}.

If x ¥ Y, let

S(x, e) :={y ¥ Y | d(y, x)=e}.

A subscript will be added to B or S, e.g. BY or SY, if there is need to specify
the space Y.
F is said to be approximate lower semicontinuous (alsc) at x0 if, for each
e > 0, there exists a neighborhood U of x0 such that

3 {B(F(x), e) | x ¥ U} ]”.
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Here we vary the terminology of [10], where approximate lsc was called
‘‘almost’’ lsc. It was proved there that F is alsc if and only if, for each
e > 0, there exists a continuous function f=fe: XQ Y such that f(x) ¥
B(F(x), e) for all x ¥X. The notions of approximate lower semicontinuity
and derived mapping are related by the following implications:

FŒ(x) ]”S F is alsc at x.

F(x) is compact and F is alsc at xS FŒ(x) ]”.

(The condition that F(x) is compact cannot be omitted.)
One of the main results of [8] is that if Y is a normed linear space of
finite dimension n and F: XQ 2Y is convex valued, then F (n) | int D(F(n)) is
lower semicontinuous, and, therefore, if D(F(n))=X, then Fg=F(n).
The definition of alsc led naturally in [10] to that of k-lower semiconti-
nuity. The set valued mapping F is k-lower semicontinous (k-lsc) at x0 if for
each e > 0, there exists a neighborhood U of x0 such that

3
k

i=1
B(F(xi), e) ]”

for each choice of k points x1, ..., xk in U. The definitions are related by the
following consequence [10] of Helly’s theorem. If Y is a normed linear
space of finite dimension n and F is closed convex valued, then

F is alscZ F is (n+1)−lsc.

The last definition we consider here is due to Przesławski and Rybiński
[23]. If Y is a metric space, then F: XQ Y is weakly lower semicontinuous
(wlsc) at x0 ¥X if for each e > 0 and each neighborhood U of x0 there
exists xŒ ¥ U such that for each z ¥ F(xŒ)

x0 ¥ int{x | F(x) 5 B(z, e) ]”}.

Gutev [14] had considered the same notion earlier but under the name
‘‘quasi-lower’’ semicontinuity. The papers [23, 24] contain a number of
related concepts, defined in less general circumstances, which are not con-
sidered here. It is clear that lscS wlscS alsc. Weak lower semicontinuity
is related to the derived mapping by the following theorem. It was first
established by Gutev [15, Theorem 2.1] by a different method.

Theorem 2.1. If X is a topological space, Y is a complete metric space,
and F: XQ 2Y is closed valued and wlsc, then FŒ is lsc.
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Proof. It must be shown that D(FŒ)=X and that Fœ=FŒ. A single
argument applied to two cases achieves both.

Case 1. Let x0 be any point of X and let U0=X.
Case 2. Let x̄0 be any point of X and y0 ¥ FŒ(x̄0). Let e > 0 and let U0
be an open neighborhood of x̄0 such that F(x) 5 B(y0, e) ]” for x ¥ U0.
Let x0 be any point of U0.

Let g > 0 and gn=g/2n. We now choose inductively a decreasing
sequence (Un)n \ 0 of neighborhoods of x0, points x

−

n ¥ Un−1 and zn ¥ F(x
−

n)
for n \ 1, according to the following specifications.

(i)n If n \ 1 and the neighborhood Un−1 of x0 has been chosen, then
by the wlsc of F we can choose x −n ¥ Un−1 such that

x0 ¥ int{x | F(x) 5 B(z, gn) ]”}

for each z ¥ F(x −n).
(ii)1 In Case 1 choose z1 ¥ F(x

−

1); in Case 2 choose z1 ¥ F(x
−

1) 5
B(y0, e), which is possible by the choice of U0.

(ii)n For n \ 2, choose zn ¥ F(x
−

n) 5 B(zn−1, gn−1).
(iii)n For n \ 1 let

Un=Un−1 5 {x | F(x) 5 B(zn, gn) ]”}.

By (i)nthe set Un defined by (iii)n is a neighborhood of x0.
By (iii)n−1 for n \ 2, if x ¥ Un−1, then F(x) 5 B(zn−1, gn−1) ]”, so that
F(x −n) 5 B(zn−1, gn−1) ]” and the choice (ii)n is possible.
Now by (ii)n, d(zn−1, zn) < gn−1. Thus

d(zm, zm+k) < gm+·· ·+gm+k−1 < 2gm=2−m+1g

and (zn) is a Cauchy sequence. Let zg=lim zn. Then d(zn, zg) [ 2gn and zn ¥
B(zg, 2gn). If x ¥ Un then, by (iii)n, F(x) 5 B(zg, 3gn) ]”, i.e. d(zg, F(x)) <
3gn. Now x0 ¥ Un for all n, and F(x0) is closed, so zg ¥ F(x0). It follows
that zg ¥ FŒ(x0). Applied to Case 1, this shows that FŒ(x0) ]” for each
x0 ¥X.
Next consider Case 2. By (ii) 1,

d(y0, zg) [ d(y0, z1)+d(z1, zg) < e+g,

so d(y0, FŒ(x0) < e+g. This holds for any x0 ¥ U0, and it follows that
y0 ¥ Fœ(x0). Thus Fœ=FŒ and the proof is complete. L
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Now let X be a paracompact Hausdorff space, let Y be a normed linear
space of finite dimension n, and let F: XQ 2Y be compact convex valued.
(All these conditions are fulfilled if X is a normed linear space, Y=M is a
subspace of X of dimension n and F=PM is the metric projection of X
onto M.) Then all the implications described above hold good, and the
basic conditions of Michael’s selection theorem are satisfied by X and Y.
The derived mappings of F are also all compact convex valued. In these
circumstances F possesses a continuous selection if and only if D(Fg)=X
[8]. We now consider the following conditions (if n > 1, then there are
2n+1 of them).

• F is k-lsc (k=2, ..., n);
• F is alsc Z F is (n+1) -lsc Z D(FŒ)=X;
• D(F(k))=X (k=2, ..., n−1);
• F has a continuous selection Z D(Fg)=X Z D(F(n))=X;
• F is wlsc S FŒ is lsc;
• F is lsc.

Each condition is implied by its successor. D(F(n−1))=X: D(F(n))=X
[8]. We expect that in general, when n > 1, all these 2n+1 conditions are
distinct. In the case n=1, the above implications yield the result [10]: if
dim Y=1, then F has a continuous selection if and only if F is alsc.
There are further particular circumstances in which the latter equivalence
holds. Let X be a normed linear space and Y=M a finite-dimensional
subspace of X. Then the implication

PM is alsc Z PM has a continuous selection

holds in the following cases.

(1) X=C(T), the space of real continuous functions on a compact
Hausdorff space T, equipped with the uniform norm. This result was
obtained independently by Li [18] and Fischer [12]. (This result also
follows from later work of Li [19] where it also extends to X=C0(T), the
space of real continuous functions which vanish at infinity on a locally
compact Hausdorff space T.)
(2) X=L1(T, m), the space of either real [20] or complex [3]

integrable functions on a measure space (T, m), equipped with the usual
norm.

Even more dramatically, Fischer [13] showed that in C(T),

PM is 2-lscS PM has a continuous selection.
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These results show that the spaces C0(T) and L1(T, m) are in a sense
‘‘nice’’ from the point of view of an interest in metric projections, and they
suggest an investigation of such ‘‘niceness.’’ In Section 5 spaces X in which
all metric projections onto one-dimensional subspaces possess continuous
selections are considered.

3. APPROXIMATE LOWER SEMICONTINUITY

Throughout this section, X will denote a topological space and M a
normed linear space of finite dimension n. We will consider mappings
P: XQ 2M which are non-empty compact convex set valued and upper
semicontinuous. If X is a normed linear space, M is a subspace of X, and
P=PM is the metric projection ontoM, then P satisfies the conditions.
The following notation and terminology will be used. The collection of
all non-empty subsets of the normed linear space M which are compact
and convex will be denotedH(M). The spaceH(M) will be endowed with
the Hausdorff metric h; that is,

h(A, B) :=max{sup
a ¥ A
d(a, B), sup

b ¥ B
d(b, A)}

for all A, B inH(M).

Lemma 3.1. Let x0 ¥X. Then the following statements are equivalent.

1. P is not alsc at x0;
2. PŒ(x0)=”;
3. For each y0 ¥ P(x0), there exists a net xa Q x0 and a d > 0 such that

d(y0, P(xa)) \ d for all a; (3.1)

4. For each y0 ¥ P(x0), there exists a compact convex set A(y0) ı
P(x0)0{y0} and a net xb Q x0 such that

h(P(xb), A(y0))Q 0. (3.2)

Proof. The equivalence of (1) and (2) has been noted in Section 2. The
equivalence of (2) and (3) follows immediately from the definition of the
derived mapping.
To prove the implication (3)S (4), assume (3) holds and let y0 ¥ P(x0).
Choose a net xa Q x0 and d > 0 such that (3.1) holds. Since (P(xa)) is a net
of compact convex sets in M which is eventually bounded, the Blaschke
selection theorem (e.g., see [16]) implies that there exists a subnet, which
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we will denote (P(xb)), and a compact convex set A=A(y0) ıM such
that h(P(xb), A)Q 0. By the upper semicontinuity of P, for each e > 0,
P(xb) … B(P(x0), e) eventually. Thus

A ı B(P(xb), e) ı B(P(x0), 2e)

eventually. Since e was arbitrary and P(x0) is closed, A ı P(x0).
If y0 ¥ A, then y0 ¥ B(P(xb), d) eventually so d(y0, P(xb)) < d eventually.
This contradicts (3.1). Thus y0 ¨ A and we obtain (4).
To verify that (4)S (3), assume (4) holds and let y0 ¥ P(x0). Choose
A(y0) and xb Q x0 as in (4). Since y0 ¨ A(y0), there exists d > 0 such that
y0 ¨ B̄(A(y0), d). Choose b0=b0(d) so that P(xb) ı B(A(y0), d) for all
b \ b0. Thus

d(y0, P(xb)) \ d(y0, B(A(y0), d))=: r > 0

for all b \ b0. That is, (3) holds. L

There is an analogous characterization of when P is k-lower semicon-
tinuous.

Lemma 3.2. Let k a positive integer, and x0 ¥X. The following
statements are equivalent.

(1) P is not k-lsc at x0;
(2) There exist k compact convex sets A1, ..., Ak in P(x0) with

4k
i=1 Ai=” and a net (x1, b, ..., xk, b) in X

k convergent to (x0, ..., x0) such
that

h(P(xi, b), Ai)Q 0 (i=1, 2, ..., k). (3.3)

Proof. (1)S (2). If (1) holds, then there exist e> 0 and net (x1, a, ..., xk, a)
in Xk convergent to (x0, ..., x0) such that

3
k

i=1
B(P(xi, a), e)=” for all a.

Since (P(xi, a)) is a net in H(M) for i=1, 2, ..., k which is eventually
bounded, the Blaschke selection theorem implies that there are a subnet,
(x1, b, ..., xk, b) say, and k compact convex sets A1, ..., Ak in M such that
h(P(xi, b), Ai)Q 0 for i=1, 2, ..., k. Thus Ai ı B(P(xi, b), e) eventually (i=
1, 2, ..., k) implies that

3
k

i=1
Ai ı 3

k

i=1
B(P(xi, b), e)=”.
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It remains to show that Ai ı P(x0) for each i. Since P is upper semicon-
tinuous, for each d > 0, P(xn, i) ı B(P(x0), d) eventually (i=1, 2, ..., k).
Also, since P(xi, b)Q Ai, it follows that, eventually, for each i

Ai ı B(P(xi, b), d) ı (P(x0), 2d).

Since d was arbitrary, Ai ı P(x0)=P(x0).
(2)S (1). Suppose (2) holds. Then

”=3
k

i=1
Ai=3

k

i=1
3
e > 0
B̄(Ai, e).

Since the sets B̄(Ai, e) are compact, there is a finite subcollection which
also has an empty intersection. That is, for some e > 0,

3
k

i=1
B(Ai, e) ı 3

k

i=1
B̄(Ai, e)=”.

By (3.3), there exists a b0 such that P(xi, b) ı B(Ai, e/2) for all b \
b0(i=1, ..., k). Thus

3
k

i=1
B(P(xi, b), e/2) ı 3

k

i=1
B(Ai, e)=”.

This proves that P is not k-lsc at x0. L

The main result of this section characterizes approximate lower
semicontinuity and will be used in Section 5.

Theorem 3.3. Let X be a toplogical space and M a normed linear space
of finite dimension n. If P: XQ 2M is non-empty compact convex set valued
and upper semicontinuous, then the following statements are equivalent.

(1) P is not approximate lower semicontinuous;
(2) P is not (n+1)-lower semicontinuous;
(3) There exists x0 ¥X, n+1 non-empty compact convex sets A1, ...,

An+1 in P(x0) with 4n+1
i=1 Ai=”, and a net (x1, a, ..., xn+1, a) in X

n+1 con-
vergent to (x0, ..., x0) such that

h(P(xi, a), Ai)Q 0 (i=1, ..., n+1).

Proof. The equivalence of (1) and (2) is a consequence of [10, Theorem
2.5]. The conditions (2) and (3) are equivalent by Lemma 3.2. L
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4. THE 2-LOWER SEMICONTINUITY

In this section two characterizations are given of finite-dimensional sub-
spaces whose metric projections are not 2-lower semicontinuous. The first
is in terms of the geometry of the unit ball of X, relative to the subspace
M, and allows one to visualise the condition. The characterization is illus-
trated by an example. The second characterization is in terms of a duality
relation. It is convenient to state as a proposition the negation of the
definition of 2-lower semicontinuity.

Proposition 4.1. The metric projection PM is not 2-lower semicontinuous
if and only if there exist y0 ¥X0M, dŒ > 0 and sequences (yj, k)k \ 1, for
j=1, 2, convergent to y0, such that

h(PM(y1, k), PM(y2, k) \ dŒ

for all k=1, 2, ... . One may also require that

d(yj, k, M)=d(y0, M)=1.

The first characterization should be thought of in terms of the set

ker PM 3 S(0, 1)={x ¥ S(0, 1) | (x+M) 5 B(0, 1)=”}.

Theorem 4.2. The metric projection PM is not 2-lower semicontinuous if
and only if there exist d > 0, points x1, x2 in X such that ||x1 ||=||x2 ||=1 and
x2−x1 ¥M, and sequences (xj, k)k \ 1 for j=1, 2, convergent to x1 and x2
respectively, such that for j=1, 2 and k=1, 2, ...,

xj, k ¥ (M+xj, k) 5 B̄(0, 1) ı S(0, 1) (4.1)

and

h((M+x1, k) 5 B̄(0, 1), (M+x2, k) 5 B̄(0, 1)) \ d. (4.2)

Proof. Suppose that PM is not 2-lsc and that dŒ and y0, (yj, k) for
j=1, 2, all distance one fromM, are as in Proposition 4.1. Then

PM(yj, k)=B̄(yj, k, 1) 5M=yj, k+B̄(0, 1) 5 (M−yj, k) ı yj, k+S(0, 1).

Choose xj, k ¥ B̄(0, 1) 5 (M−yj, k) for k=1, 2, ... and j=1, 2. Choosing
subsequences it may be supposed that xj, k Q xj as kQ. for j=1, 2. Then
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y0+xj ¥ PM(x0) for j=1, 2 and x2−x1 ¥M. Also M−yj, k=M+xj, k, so
Eq. 4.1 is satisfied. Furthermore,

h((M+x1, k) 5 B̄(0, 1), (M+x2, k) 5 B̄(0, 1))

\ h(PM(y1, k), PM(y2, k))− ||y2, k−y1, k || \ dŒ−||y2, k−y1, k ||.

Thus tails of the sequences (xj, k)k \ 1, j=1, 2, and d=dŒ/2 satisfy the
condition of the theorem.
Conversely, suppose that d, x1, x2 and (xj, k)k \ 1, for j=1, 2 satisfy the
conditions. Let m0=x2−x1, y0=

1
2 (x1+x2), and yj, k=xj, k−

1
2 (−1)

j m0 for
k=1, 2, ... and j=1, 2. Then y0=limkQ. yj, k for j=1, 2. Also,

yj, k−B̄(yj, k, 1) 5M=B̄(0, 1) 5 (M+xj, k) ı S(0, 1),

so that d(yj, k, M)=1 and, for j=1, 2,

PM(yj, k)=yj, k−B̄(0, 1) 5 (M+xj, k),

which implies that

h(PM(y1, k), PM(y2, k))

\ h((M+x1, k) 5 B̄(0, 1), (M+x2, k) 5 B̄(0, 1))− ||y2, k−y1, k ||

\ d−||y2, k−y1, k ||Q d as kQ..

It follows from Proposition 4.1 that PM is not 2-lsc. L

We now give a simple example of a 3-dimensional normed linear space X
and a 1-dimensional subspaceM of X such that PM is not 2-lsc and so does
not have a continuous selection.

Example (The Split-Disc Space). Consider the half-disc in R3:

C={(a, 1, c) | a \ 0, a2+c2 [ 1}

and the convex hull B=co(C 2 −C) of C with its negative. Then the
Minkowski functional of B is a norm on X=R3 whose unit ball is B.
Consider the 1-dimensional subspaceM=R(0, 1, 0) of X.
Taking s ¥ {1, −1} and xs, a=(sa, s, (1−a2)1/2) for 0 < a [ 1, we get
(xs,a+M) 5 B={xs,a}. Letting aQ 0, it follows immediately from Theorem
4.2 that PM is not 2-lsc.
This example of a space with a one-dimensional subspace for which the
metric projection has no continuous selection was given in the dissertation
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of Brown [5] and it has been exploited in [3]. It was also discovered
independently by Kenderov in 1986 in response to a question of the second
author.
The second characterization of ‘‘not 2-lsc’’ is in terms of both X and Xg.
The following notation will be used. For x ¥X0{0}, let

J(x) :={xg ¥Xg | ||xg||=1, xg(x)=||x||}.

Thus J(x) is the set of functionals in SX*(0, 1) which ‘‘peak’’ at x, and also
is the exposed face of B̄X*(0, 1) determined by x ¥X. An elementary lemma
is required.

Lemma 4.3. If P1 and P−1 are compact convex subsets of a finite-dimen-
sional space M and h(P1, P−1)=d > 0, then there exists f ¥Mg such that
||f||=1,

f(p1)−f(p−1) \ d

for all p1 ¥ P1 and p−1 ¥ P−1, and

f(a1−a−1)=||a1−a−1 ||

whenever a1 ¥ P1, a−1 ¥ P−1 and ||a1−a−1 ||=h(P1, P−1).

Proof. Let C=P1−P−1. Then C is convex and C 5 BM(0, d)=”. The
conclusion of the lemma is satisfied by choosing a f ¥ SM*(0, 1) which
separates the sets C and BM(0, d). L

Theorem 4.4. Let X be a normed linear space andM a subspace of finite
dimension n. Then PM is not 2-lsc if and only if there exist x0 ¥X, b0 ¥M, an
n−1 dimensional subspace L of M, and for each s ¥ {1, −1} sequences
xn=xn(s)Q x0, yn=yn(s) ¥ L+sb0, and kn=kn(s) ¥ J(xn−yn) 5 L +

such that kn(sb0) > 0 for each n=1, 2, ... .

Proof. Suppose that PM is not 2-lsc at x0. Then by Proposition 4.1 there
exist d > 0 and, for each s ¥ {1, −1}, a sequence xn(s)Q x0 such that

h(PM(xn(1)), PM(xn(−1))) \ d.

For each s and each n choose an(s) ¥ PM(xn(s)) such that

||an(1)−an(−1)||=h(PM(xn(1), PM(xn(−1)).
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By the lemma, for each n=1, 2, ..., there exists fn ¥ SM*(0, 1) such that

inf fn(PM(xn(1))− sup fn(PM(xn(−1)) \ d,

fn(an(1)−an(−1))=||an(1)−an(−1)|| \ d.

Extracting subsequences it may be supposed that the sequences (fn),
(an(1)) and (an(−1)) are convergent to f ¥ SM*(0, 1), a(1) and a(−1) in M
(actually in PM(x0)). Then f(a(1)−a(−1))=||a(1)−a(−1)|| \ d. Subtract-
ing 1

2 (a(1)+a(−1)), it may be supposed that
1
2 (a(1)+a(−1))=0. Let

b0=
1
2 a(1) and L=f

−1(0) ıM. Then f(b0)=||b0 || \
1
2 d.

It is now easily shown that, for some n0, for all n \ n0, for all y ¥
PM(xn(1)), and all yŒ ¥ PM(xn(−1)), there follows

f(y) > f(b0) \ d/2, f(yŒ) < f(−b0) [ −d/2. (4.3)

Then for each s ¥ {1, −1}, f−1(s ||b0 ||=L+sb0 and (L+sb0) 5 PM(xn(s)
=”, so that d(xn(s), L+sb0) > d(xn(s), M). Therefore

PM(xn(s) ı B(xn(s), d(xn(s), L+sb0)). (4.4)

For each n \ n0 and each s ¥ {1, −1} choose yn(s) ¥ PL+sb0 (xn(s)) and
kn=kn(s) ¥ SX*(0, 1) such that

inf kn(B(xn(s), d(xn(s), L+sb0))) \ sup kn(L+sb0). (4.5)

It then follows that kn(s) ¥ J(xn(s)−yn(s)) 5 L + . Now {fŒ ¥Mg | f(L)
={0}} is a subspace of Mg of dimension one, so that kn(s) |M*=ln(s) f
for some ln(s). By (4.4) and (4.5), for all y ¥ PM(xn(s)),

ln(s) f(y)=kn(y) \ kn(sb0)=ln(s) f(sb0).

It now follows by (4.3) that sln(s) > 0 and hence

kn(sb0)=ln(s) sf(b0) > 0

for each s ¥ {1, −1} and all n \ n0. This proves that the condition of the
theorem is satisfied.
Now suppose that x0, b0, L, xn(s), yn(s) and kn(s) are as in the condi-
tion of the theorem. Choose f ¥Mg such that f(L)={0} and f(b0)=||b0 ||.
Then kn(s) |M=ln(s) f for some ln(s) and sln(s) > 0. If y ¥ PM(xn(s)),
then

kn(xn−b0)=kn(xn−yn)=||xn−yn ||

\ d(xn, M)=||xn−y|| \ kn(xn−y),
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so that kn(y) \ kn(b0) and sf(y) \ sf(b0)=s ||b0 ||. Therefore if y ¥
PM(xn(1)) and yŒ ¥ PM(xn(−1)), then ||f|| ||y−yŒ|| \ f(y−yŒ) \ 2 ||b0 || for
all n=1, 2, ... . This proves that PM is not 2-lsc. L

5. SPACES WITH THE PROPERTY (CS1)

We will say that a normed linear space X has the property (CS1) if
whenever M is a one-dimensional subspace of X the metric projection PM
has a continuous selection or, equivalently, is 2-lower semicontinuous.
Theorem 5.1 shows that the property (CS1) is equivalent to the property
that PM is alsc for every finite-dimensional subspace M of X. Theorem 5.3
provides a geometric characterization of spaces with the property (CS1).
The spaces of type C0(T) and L1(m) which have property (CS1) are deter-
mined: C0(T) does so if and only if the space T is discrete (Theorem 5.5),
L1(m) does so if and only if it has finite dimension. Finally an example is
given of a three-dimensional space X having one-dimensional subspaces
with metric projections that are not lower semicontinuous, but have
(unique) continuous selections. In fact X has the property (CS1).

Theorem 5.1. A normed linear space X has the property (CS1) if and
only if the metric projection PM is approximate lower semicontinuous for
every finite-dimensional subspaceM of X.

Proof. The sufficiency of the condition is contained in the statements of
Section 2.
To prove the necessity of the condition it will be shown that if M is a
finite-dimensional subspace of X and PM is not alsc, then there exists a one-
dimensional subspace L of M such that PL is not alsc. Suppose that M is
such a subspace. By Theorem 3.3 there exist x0 ¥X and an integer r \ 2
such that for some r non-empty compact convex subsets A1, ..., Ar of PM(x0)
and some r sequences (xj, n)n \ 1, for j=1, ..., r, each convergent to x0,

3
r

j=1
Aj=” and h(PM(xj, n), Aj) <

1
n

for n=1, 2, ..., j=1, ..., r.

We choose r to be minimal so that 4 r
j=2 Aj ]”. Choose y1 ¥ A1 and

y2=·· ·=yr ¥4 r
j=2 Aj. If we translate by

1
2 (y1+y2) ¥M, so replacing x0

by x0−
1
2 (y1+y2), etc., then we may suppose that y1+y2=0. Let L=Ry1.

It will be shown that P −L(x0)=”, so that PL is not alsc at x0.
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Choose, for each j=1, ..., r and each n=1, 2, ..., a point y −j, n ¥ PM(xj, n)
such that ||yj−y

−

j, n || < 1/n. Then

yj ¥ PM(xj, n+yj−y
−

j, n)=yj−y
−

j, n+PM(xj, n) ı B(Aj, 2/n).

But yj ¥ L ıM, so

||xj, n−y
−

j, n || \ d(xj, n+yj−y
−

j, n, L)

\ d(xj, n+yj−y
−

j, n, M)=||xj, n−y
−

j, n ||,

and therefore

yj ¥ PL(xj, n+yj−y
−

j, n)=L 5 PM(xj, n+yj−y −j, n) ı B(Aj, 2/n).

For each j=1, ..., r, x0=limnQ. (xj, n+yj−y
−

j, n) and it follows that

P −L(x0) ı 3
n \ 1

3
r

j=1
B(Aj, 2/n)=”,

and the proof is complete. L

If z ¥X0{0}, let [z]=Rz denote the one-dimensional subspace of X
spanned by z. For x ¥X, define

p(x) :={c0 ¥ R | ||x− c0z||=inf
c ¥ R
||x− cz||},

so thatP[z](x)=p(x) z. The lemmawhich follows provides a characterization
of 2-lower semicontinuity of P[z] in terms of p.

Lemma 5.2. Let X be a normed linear space and let p: XQ 2R be an
upper semicontinuous mapping such that p(x) is a non-empty compact inter-
val for each x ¥X. Given any x0 ¥X, the following statements are equivalent.

(1) p is 2-lower semicontinuous at x0;
(2) If b > a and [a, b] ı p(x0), then there exists e > 0 such that

either p(x)3 (−., b] ]” for all x ¥ B(x0, e),

or p(x)3 [a,.) ]” for all x ¥ B(x0, e).

Proof. The mapping p is not 2-lsc at x0 if and only if there exist d > 0
and sequences (xj, k)k \ 1 convergent to x0, for j=1, 2, such that

h(p(x1, k), p(x2, k) \ d for all k=1, 2, ... .

LOWER SEMICONTINUITY CONCEPTS 135



We may suppose, first, that

sup p(x1, k) [ inf p(x2, k),

and, second, by selecting a subsequence and invoking the upper semicon-
tinuity of p, that the sequences (sup p(x1, k))k \ 1 and (inf p(x2, k))k \ 1 are
convergent, and, finally, that there is an interval [a, b], where b−a > d/2,
such that

p(x1, k) ı (−., a), p(x2, k) ı (b,.) for all k=1, 2, ... .

The inclusions can be rewritten as

p(x1, k) 5 [a,.)=”, p(x2, k) 5 (−., b]=” for all k=1, 2, ... .

It follows that p is not 2-lsc at x0 if and only if the second condition of the
statement is not satisfied. L

The final characterization of spaces X which have the property (CS1)
now follows in a straightforward way from this lemma.

Theorem 5.3. If X is a normed linear space, then the following
conditions are equivalent.

(1) X has the property (CS1);
(2) For each x0 ¥X and z ¥X0{0}, if b > a and

[a, b] ı p(x) :={c0 ¥ R | ||x− c0z||=inf
c ¥ R
||x− cz||},

then there exists e > 0 such that

either p(xŒ)3 (−., b] ]” for all xŒ ¥ B(x, e),

or p(xŒ)3 [a,.) ]” for all xŒ ¥ B(x, e).

Remarks. It is of interest to compare the property (2) of Theorem 5.3
with Brown’s property (P). Brown [6] defined a geometric property
(‘‘property (P)’’) which he proved was equivalent to the metric projection
onto each finite-dimensional subspace being lower semicontinuous, so that
(by the Michael Selection Theorem) the metric projection onto each finite-
dimensional subspace has a continuous selection. It follows that property
(P) implies property (CS1). It can also be seen by a direct comparison
of property (P) and the condition (2) of Theorem 5.3 that the former
implies the latter. Blatter, Morris, and Wulbert [1] observed that X has
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property (P) if and only if the metric projection onto each one-dimensional
subspace of X is lower semicontinuous.
Next we turn to the question of which spaces of type C0(T) and L1(m)
have property (CS1). Let T be a locally compact Hausdorff space. By
C0(T) we mean the Banach space of all real continuous functions x on T
which ‘‘vanish at infinity’’ (i.e., {t ¥ T | |x(t)| \ e} is compact for each
e > 0), endowed with the uniform norm: ||x||=sup{|x(t)| | t ¥ T}. If T is
compact, then C0(T) is the space of all real continuous functions on T, and
is denoted C(T). T is discrete if every subset of T is open.

Lemma 5.4. Let T be a locally compact Hausdorff space. Then T is
discrete if and only if each compact subset of T is finite.

Proof. The ‘‘only if’’ part is obvious.
Suppose each compact subset of T is finite and let t ¥ T. Choose a
compact neighborhood U of t. Then U={t, t1, ..., tn}. For i=1, ..., n,
choose disjoint neighborhoods Ui of t and Vi of ti. Then U 5 (4n

i=1 Ui)
={t} is open. Thus T is discrete. L

For any x ¥ C0(T), let Z(x)=x−1(0) and let “Z(x) denote the boundary
of Z(x). Also, for any subset T0 of T, card T0 will denote the cardinality of
T0. A function x ¥ C0(T) does not change sign at a point t ¥ T if there is a
neighborhood U of t such that either x \ 0 on U or x [ 0 on U.

Theorem 5.5. Let T be a locally compact Hausdorff space. Then the
following statements are equivalent.

(1) C0(T) has property (CS1);
(2) For each x ¥ C0(T),

(a) card “Z(x) [ 1, and
(b) For each t ¥ “Z(x), x does not change sign at t;

(3) T is discrete.

Proof. (1)Z (2). By Lazar et al. [17] when T is compact, and by
Deutsch, Indumathi, and Schnatz [9, Theorem 5.1] in the general case,
each one-dimensional subspace of C0(T) has a continuous metric selection
if and only if (2) holds for each x ¥ C0(T)0{0}. (Also, (2) holds trivially if
x=0.)
(2)S (3). Suppose (2) holds and K … T is compact. It suffices by
Lemma 5.4 to show that K is finite. If K is not finite, choose a sequence
(sn) of distinct points in K. Let s0 ¥K be a cluster point of (sn). By remov-
ing one sn if necessary, we may assume that s0 ¨ {s1, s2, ...}. We now con-
struct a sequence (tn) of points in K and disjoint neighborhoods Un of tn
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inductively as follows. Fix any integer n1 \ 1 and choose disjoint neigh-
borhoods U1 of sn1 and U1, 0 of s0. Having chosen points sn1 , ..., snk with
disjoint neighborhoods U1, ..., Uk and a neighborhood Uk, 0 of s0 disjoint
from 1k

i=1 Ui, select an integer nk+1 > nk such that snk+1 ¥ Uk, 0. Then choose
disjoint neighborhoods Uk+1 of snk+1 and Uk+1, 0 of s0 such that Uk+1 2
Uk+1, 0 ı Uk, 0. Set tk=snk (k=1, 2, ...). This yields a sequence (tn) in K and
disjoint neighborhoods (Un).
Let t0 be a cluster point of (tn) and set A={t1, t2, ...}. Then t0 ¥ Ā0A.
Define x on the compact set Ā by

x(t)=˛0 if t ¥ Ā0A
(−1)n 2−n if t=tn.

It is easy to see that x is continuous on Ā. By the Tietze Extension
Theorem, x can be extended to a function (also denoted by x) in C0(T).
Clearly, for each t ¥ Ā0A, we have t ¥ “Z(x). By (a), it follows that
Ā0A={t0}; i.e., t0 is the only cluster point of (tn). Hence (tn) converges
to t0. Since x(tn)=(−1)n 2−n, it follows that x changes sign at t0. But this
contradicts (b).
(3)S (2). If T is discrete, “Z(x) is empty for each x ¥ C0(T) so (2)
holds trivially. L

If T is discrete then C0(T) has property (P) and hence property (CS1).
Thus property (P) and property (CS1) coincide in C0(T).
Also, if T is a compact Hausdorff space, then clearly T is discrete if and
only if T is finite. As an immediate consequence of this observation and
Theorem 5.5 we obtain the following corollary.

Corollary 5.6. Let T be a compact Hausdorff space. The following
statements are equivalent:

(1) C(T) has property (CS1);
(2) T is finite;
(3) C(T) is finite-dimensional.

Next we consider the analogue of Theorem 5.5 in spaces of integrable
functions. Let (T,S, m) be a measure space and let L1(m) denote the space
of allS-measurable functions x on T with

||x|| :=F
T
|x| dm <..
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Identifying two functions which are equal a.e. (m), L1(m) becomes a Banach
space.
A set A ¥S is called an atom if m(A) > 0 and whenever B ¥S, B ı A,
either m(B)=0 or m(B)=m(A). We will not distinguish between any two
sets A and B in S which differ only by a set of measure zero; i.e., if
m[(A 2 B)0(A 5 B)]=0, we identify A and B. A set E ¥S is s-finite if E
is the countable union of sets having finite measure. If x ¥ L1(m), the
support of x is the set

supp(x) :={t ¥ T | x(t) ] 0}.

The following lemma collects some useful facts about atoms that we
need.

Lemma 5.7. (1) For each x ¥ L1(m), supp(x) is s-finite.
(2) There are at most a countable number of atoms in a s-finite set,

and each such atom has finite measure.

(3) A measurable function x is constant a.e. (m) on an atom A of finite
measure; this value will be denoted by x(A).
(4) If A is any atom with m(A)=., then x=0 a.e. (m) on A for each

x ¥ L1(m).
(5) If E ¥S has the property that 0 < m(E) [. and E contains

no atoms, then for each sequence of positive numbers (en), there exists a
sequence of pairwise disjoint sets (En) in E with 0 < m(En) < en for each n.

The statements (1), (2), and (3) seem fairly well known. Statement (5) can
be proved using the same idea as in the proof of Saks’s lemma [11, p. 308].
We now verify statement (4).
If x ¥ L1(m), then

A 5 supp(x)=0
.

n=1
An, where An=A 5 3 t | |x(t)| \ 1

n
4 .

If m(An) > 0 for some n, then since A is an atom, m(An)=m(A)=.. But

.=
1
n
·. [ F

An
|x| dm [ ||x|| <.

which is absurd. Hence m(An)=0 for every n so that m(A 5 supp(x))=0.
That is, x=0 a.e. (m) on A. L
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Lemma 5.8. The following statements are equivalent.

(1) L1(m) is finite-dimensional;
(2) T is a union of atoms of which at most finitely many have finite

measure;

(3) L1(m) is the linear span of a set of characteristic functions
{qA1 , ..., qAn}, where each Ai is an atom having finite measure.

Proof. (1)S (2). Suppose (2) fails. Then either

(i) T contains an infinite number of disjoint atoms with finite
measure, or
(ii) T contains a set E which has no atoms and m(E) > 0.

Using Lemma 5.7(5), it follows that in either case there exists a disjoint
sequence of sets (En) with 0 < m(En) <.. Then the sequence of functions
(qEn | n=1, 2, ...) is linearly independent in L1(m) so that dim L1(m)=..
That is, (1) fails.
(2)S (3). If (2) holds, T=(1n

k=1Ak) 2 E, where each Ak is an atom
having finite measure and E is a union of atoms having infinite measure.
By Lemma 5.7(4), it follows that x=0 a.e. (m) on E for each x ¥ L1(m).
Also, x is constant a.e. (m) on each Ak implies that, for each x ¥ L1(m),

x=C
n

k=1
x(Ak) qAk .

That is, L1(m) is spanned by {qA1 , ..., qAn} and (3) holds.
The implication (3)S (1) is obvious. L

A set E ¥S is called a unifat [9] if it is the union of a finite number of
atoms. The following intrinsic characterization of the one-dimensional
subspaces in L1(m) which have continuous metric selections was given
in [9].

Theorem 5.9 [9, Theorem 6.3]. Let x ¥ L1(m)0{0}. Then P[x] has a
continuous selection if and only if whenever A ı supp(x) satisfies

F
A
|x| dm=F

supp(x)0A
|x| dm,

either A or supp(x)0A must be a unifat.

Theorem 5.10. The following statements are equivalent.

(1) L1(m) has property (CS1);
(2) L1(m) is finite-dimensional.
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Proof. (1)S (2). If dim L1(m)=., then Lemmas 5.8 and 5.7(5) imply
that there is a sequence of disjoint sets (En) inS with 0 < m(En) <..
Define An=E2n−1, Bn=E2n, A=1.

n=1 An, B=1.

n=1 Bn, and

x=C
.

n=1
[2nm(An)]−1 qAn+C

.

n=1
[2nm(Bn)]−1 qBn.

Then x ¥ L1(m)0{0}, A and B are disjoint, supp(x)=A 2 B, neither A nor
B is a unifat, and

F
A
|x| dm=C

.

n=1
2−n=F

B
|x| dm.

By Theorem 5.9, P[x] fails to have a continuous selection; that is, (1)
fails.
(2)S (1). If L1(m) is finite-dimensional, then by Lemma 5.8, the
support of each x ¥ L1(m) is a unifat. Thus P[x] has a continuous selection
by Theorem 5.9. Hence L1(m) has property (CS1). L

It is a consequence of Corollary 5.6 and Theorem 5.10 that if a space
C(T) or L1(m) has the property (CS1), then it is finite-dimensional and its
unit ball is a polytope; it therefore has the property (P) and for every sub-
space M the metric projection PM is lower semicontinuous. We conclude
this section with an example of a three-dimensional space which has the
property (CS1), but in which there are one-dimensional subspaces with
metric projections that are not lower semicontinuous.

Example. Let X=l2(2) À1 R. Thus X is R3 with a norm for which the
closed unit ball B is a double cone of circular base

C={(x1, x2, 0) | x
2
1+x

2
2=1}

and vertices (0, 0, 1) and (0, 0, −1).
A one-dimensional subspace L of X is a Chebyshev subspace if and only
if it is not parallel to a non-degenerate line segment of the unit sphere of X;
that is, if it is not parallel to a generator of the cones. There are thus two
cases: (i) L is Chebyshev and PL is singleton valued and continuous, or (ii)
L is parallel to a generator [v, x] where v ¥ {(0, 0, 1), (0, 0, −1)} and
x ¥ C. In this case

{y ¥X | y ¥ (y+L) 5 B ı SX(0, 1)}

is the union C 2 [v, x] 2 [−v, −x] of the circle C and two line segments
each attached to the circle at an end point. Thus one sees that the metric
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projection PL is not lower semicontinuous, but that it has a unique contin-
uous selection. Thus the space X has the property (CS1), and, furthermore,
for each one-dimensional subspace of X the metric projection has a unique
continuous selection.
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